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Abstract. The paper presents a practical application of the four bar linkage 

in the field of inertial transportation. Rectilinear movement of a rigid body on a 

horizontal plane in an imposed direction is given by inertial force developed by 

sitting plane movement. Thus, sitting plane is tied to a four bar rocker, horizontal 

pose being obtained from another four bar linkage (of parallelogram type). 

Connecting rod of this linkage imposes the circular translation movement of the 

sitting plane. This complex mechanism may be regarded as composed by two 

four bar linkages, one of common type and another of parallelogram type, rocker 

of the first being at the same time, crank of the later. The goal of this study is the 

rigid body movement on the horizontal plane. Under the circumstance that the 

driving link is the crank of the four bar linkage, the problem is about relative 

motion dynamics (of the rigid body on the sitting plane). 
 

Keywords: four bar linkage; parallelogram linkage; circular translation; 

relative movement. 
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1. Introduction 

 

The experimental inertial transport mechanism with its kinematic 

components is shown in Fig. 1. Electric DC engine supplied from a transformer 

actuates the driving crank, by a worm gear.  

 

 
 

Fig. 1 – The inertial transport mechanism (experimental model): 1 – fixed support, 

 2 – electric DC engine, 3 – driving crank, 4 – connecting rod, 5 – rocker, 6 – rocker in 

parallelogram linkage, 7 – sitting plane, 8 – solid body denoted by (W). 

 

The four bar linkage is composed by the crank (3), the connecting rod 

(4), the rocker (5) and the fixed support (1). The parallelogram mechanism is 

composed by the rockers (5) and 6), the connecting rod (7) and the connecting 

rod (7) being at the same time the sitting plane on which the solid body moves. 

The subject of this study is the motion of the solid body (W). The 

dynamic study represents a problem of relative motion dynamics, that is the 

rectilinear movement of the body (W) on the sitting plane. The circular 

alternative translation motion of the sitting plane (7) is the transport motion. 

As hypothesis there are known the four bar driving constructive 

characteristics of the mechanism, the angular velocity of the crank and the 

friction coefficient between body (W) and the sitting plane. The (W) body is 

supposed of rectangular shape. 

 
2. Constructive and Initial Considerations 

  

The mechanism dynamical study requires two stages. In the first one the 

parameters of the rocker transport motion are determined, this being a problem 

of kinematics. In the second the relative motion of (W) body is studied, this 

being problem of dynamics (Duca et al., 2003). 

 A mechanical model of the four bar linkage driving mechanism it is 

considered (Fig. 2). In this diagram, the following notations are made (as in the 

figure): O – the crank revolute pair, C – the rocker revolute pair, A, B – the 

connecting rod pairs, 0d  - the horizontal length between O and C, h – the 
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vertical length between O and C. We also denote by r – the crank radius, b – the 

rocker length and l – the connecting rod length. 

The mechanical model is reported to an orthogonal system Oxy having 

the Ox  axis collinear with the direction of the fixed pairs ( , )O C . 

The constructive parameters of the driving mechanism are the lengths of 

the crank, of the connecting rod, of the rocker and the length of the distance 

between the fixed pairs ( , )O C . These lengths and their notation, accorded with 

Fig. 2, are presented in Table 1. 

 
 

Fig. 2 – The scheme of the driving four bar mechanism. 

 

Knowing d0 = 38 cm and h = 3 cm, the length between O and C fixed 

joints can be calculated: 

2 2 2 2

0 38 3 38.12 cmd d h     .
 
 (1) 

Table 1 

The Lengths of the Elements 

Link Notation Length
 

[cm] 
Fig. 1 Fig. 2 

 Crank 3 OA 6r   

 Connecting rod 4 AB 50l   

 Rocker 5 CB 30b   

 Fixed support 1 OC 38.12d   

 

The angles in Fig. 2 have following significance: φ  ‒ the crank position 

angle ( , )φ  OX  OA ccw., θ  ‒ the rocker position angle, ( , )θ  OX  CB  

ccw.,   ‒ the angle between OX axis and CA variable line, ( , )γ OX CA cw. 
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3. Driving Mechanism Kinematics 
 

The 1
st
 stage of the study consists in solving the four bar linkage 

kinematics. Thus, it is determined the rocker angle  as function of the crank 

angle φ . Knowing the crank motion law, the rocker kinematical parameters are 

determined.  

Applying Pythagoras Generalized Theorem in the ABC (Fig. 2), the 

following relationship can be written (Rogai and Teodorescu, 1975): 

2 2 2

cos( )
2

l b f

bf
 

 
  , (2) 

where f AC , variable length. 

 Applying the same theorem in the AOC (Fig. 2), it results: 

2 2 2 2 cosf r d r d      ,  d OC ,  

2 2( ) 2 cosf r d r d      . (3) 

From the AOC , the following relations can be expressed (Rogai and 

Teodorescu, 1975): 

sin
tan

cos

r

d r









 
, (4) 

sin
sin

r

f





 ,   

cos
cos

d r

f




 
 . (5) 

 

The Eq. (4) and the Eq. (5) appear more clear if in Fig. 2, an auxiliary 

construction is made by projecting the point A on OX axis: 0AA OX , 

0A OX . 

 By introducing the constant positive value 

2 2 2a l b  , (6) 

Eq. (2) can be written 

2 2

arccos
2

a f

b f
 


 


, (7) 

And by replacing  according to Eq. (4) it results: 
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2 2 sin
arccos arctan

2 cos

a f r

b f d r






 
 

  
, (8) 

where f is given by Eq. (3). 

Eq. (8) shows the function θ=θ(φ) , that is the output position parameter 

as function of input independent variable of the driving four bar linkage. 

For kinematic purpose it admits that crank performs a uniform rotation 

ccw. motion, expressed by the relationship 

0( )t t  , 0t  , (9) 

where 
0 is a constant angular velocity and t  denotes the time. 

By performing the derivative of Eq. (7) with respect to time, it results: 
 

 

2 2

2
2 2 2 24

a f f

f
b f a f

 


  

 


  , 

(10) 

where 
d

dt


  , 

d

dt


  , 

df
f

dt
 . 

Calculating the derivative of the function f accordingly to the Eq. (3), it 

obtains: 

0

sin
f r d

f


  , (11) 

By replacing Eq. (11) in Eq. (10) it results: 

 

 

2 2

0

2
2 2 2 2 2

sin

4

r d a f

f b f a f

 
 

 
 

 

  , (12) 

By computing the derivative of Eq. (4) with respect the time it obtains: 
 

   

 
0 0

22

cos cos sin sin

cos cos

r d r r r

d r

     

 

 





,  

or still, 

 
 

2
2 0 0

2

cos
1 tan

cos

r d r

d r

  
 



 
 


 , (13) 

 

Based on Eq. (4) it results the following equation  
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   

2 2
2

2 2

sin
1 tan 1

cos cos

r f

d r d r




 
   

 
, (14) 

where f was replaced according to Eq. (3). 

Replacing Eq. (14) in Eq. (13), it results: 

0 2

cosd r
r

f


 


  , (15) 

By substituting Eq. (15) in Eq. (12), the rocker angular velocity it is 

obtained: 

 

 

2 2

0

2 2
2 2 2 2

sin
cos

4

d a fr
r d

f
b f a f


  

 
 

    
   

 , 

 

(16) 

where f is given by Eq. (3) and   is given by Eq. (9): 

2 2( ) 2 cosf r d r d      , 0( )t t  where f is a composed function 

of time by angle  . 

The derivative of Eq. (10) with respect the time is: 
 

   

 

  

 

2 2 2 2 2 2 2 2 2 2 2

32
22 2 2 2 2

2 2 2 2

 2 2

4 4

f f f a f f a f f a f b a

f b f a f b f a f

 
      

  
     
 

  
 

 

(17) 

 

where 
2

2

d

dt


  , 

2

2

d

dt


  , 

2

2

d f
f

dt
 . 

Calculating the derivative of second order of function f with respect the 

time, according to Eq. (11), it obtains 

0
0 2

cos sinf f
f r d

f

  



 


 , (18) 

where, after f is substituted according to Eq. (11), it results: 
 

0 0
0 2

cos sinf r d
f r d

f

   


  
  , 

and yet  

 

 
2

2 20

3
cos sin

r d
f f r d

f


 


    . (19) 
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Calculating the second order derivative of the angle   according to Eq. 

(15), it obtains,  

 20
04

sin 2 cos
r

d f f f d r
f


         

 , (20) 

relationship where f is substituted according to the Eq. (11) and it results: 

 2 20

4
2 sin sin 2 sin

r d
r r d f

f


   


     . (21) 

After replacing Eq. (21) in Eq. (17), the rocker angular acceleration is 

obtained: 

   

 

  

 

 

2 2 2 2 2 2 2 2 2 2 2

32
22 2 2 2 2

2 2 2 2

2 20

4

2 2

4 4

sin
2 cos 2 ,

f f f a f f a f f a f b a

f b f a f b f a f

r d
f r d r

f

 

 


      
  

     
 


    

  


 

(22) 

where f  is given in Eq. (3) and   in Eq. (9) 

2 2( ) 2 cosf r d r d      , 0( )t t  , 

and f  is given in Eq. (11) and f  in Eq. (19) 

0

sin
f r d

f


  ,  

2
2 20

3
cos sin

r d
f f r d

f


 


    , 

where ,f f  and f are composed functions of time through  . 

As conclusions of the performed kinematical study, the followings can 

be noticed: 

1. The constructive parameters of driving four bar linkage were 

considered input data: r, l, b, d (Fig. 2). The constant angular velocity 0 is 

supposed to be known; 

2. The angular position of the rocker as function of time given by 

relationship (8) is obtained: 

 
2 2 sin

arccos arctan
2 cos

a f r
t

b f d r






 
 

  
; (23) 

3. The rocker angular velocity given by the derivative of the first order 

of the function  t  with respect the time, given by Eq. (16), is obtained 
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 
 

 

2 2

0

2 2
2 2 2 2

sin
cos

4

d a fr
t r d

f
b f a f


 

 
 

   
   

; 

 

(24) 

4. The rocker angular acceleration given by the derivative of the second 

order of the function  t  with respect the time, given by Eq. (22), is obtained: 

 
   

 

  

 

 

2 2 2 2 2 2 2 2 2 2 2

32
22 2 2 2 2

2 2 2 2

2 20

4

2 2

4 4

sin
2 cos 2 ,

f f f a f f a f f a f b a
t

f b f a f b f a f

r d
f r d r

f



 


      
  

     
 


   

  

 

(25) 

Eq. (23), Eq. (24) and Eq. (25) are implicit periodical functions of time, 

with the period 02 /T   . 

In Eq. (23) and Eq, (24) are used the notations given by Eq. (3), Eq. (6) 

and Eq. (9): 

2 2( ) 2 cosf r d rd     , 
2 2 2a l b  , 

0( )t t   (26) 

In Eq. (25) are used the same notations and also the derivative of the 1
st
 

and the 2
nd

 order of the function f with respect the time, given by Eq. (11) and 

Eq. (19): 

0

sin
f r d

f


  ,   

2
2 20

3
cos sin

r d
f f r d

f


 


     (27) 

 

4. Dynamical Study 
 

In the 2
nd

 stage of this paper, the dynamical study of the parallelogram 

mechanism was made. It consists in calculus of the body (W) displacement on 

the sitting plane, considering as hypothesis all the results of the kinematical 

study, obtained in the previous paragraph.  

The dynamical study represents a problem of relative motion dynamics. 

The rectilinear movement of the body (W) on the sitting plane is a relative one. 

The translation circular alternative motion of sitting plane is a transport motion. 

The body (W) motion reported to the fixed referential system Oxy (the 

referential system of the four bar driving linkage) is an absolute motion. 
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Let us consider an experimental model of the inertial transport 

mechanism, presented in Fig. 1. The mechanical model represented in Fig. 2 is 

completed with a parallelogram mechanism, so that crank of this mechanism is, 

at the same time, the rocker of the previous presented four bar linkage. The 

parallelogram mechanism, with the connecting rod in the horizontal position, 

reports to an orthogonal mobile referential system Bx y   with origin in B and 

Bxaxis, horizontal, on sitting plane direction (Fig. 3).  

 
 

Fig. 3 – The mechanical model of the transport mechanism. 

 

With α  is denoted the constant angle between Ox  and Bx  axes. 

According to Fig. 2 and Fig. 3, 

0

3
arctan arctan 4 30

38

h

d
     , (28) 

with 0d  and h given by Eq. (1).  

 Taking down m as the body (W) mass, the dynamic equation of its 

relative motion on the sitting plane is (Mangeron and Irimiciuc, 1978; 

Teodorescu, 1984): 

r f inma G N F F    , (29) 

where ra  is the relative acceleration and the other notations represent the  

following forces: the gravity force  G  and the normal reaction  N  which 

have vertical direction, the friction force  fF  and the inertial force  inF  

which have horizontal direction (Fig. 3). The friction force has opposite sense 
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to the relative motion and the inertial force has opposite sense to the transport 

acceleration. 

 If the body (W) coordinate with respect to the mobile system is denoted 

by x  and if i and j denote the axes unit vectors, the following relationships 

can be written: 

G mg mg j     and  N N j  , (30) 

where g is gravitational acceleration, g = 9.8 m/s
2
; 

 sgnfF N x i     ,   
dx

x
dt


  , (31) 

where   is sliding friction coefficient and „sgn‟ is the signum function i.e. 

, 0

, 0,
f

N x
F

N x





 
 

 




  

ra x i   ,   
2

2

d x
x

dt


  . (32) 

We note the coordinates of the point B with respect to the fixed 

referential system by x and y and the axes unit vectors of the same frame by i

and j . The transport force of inertia is now: 

 in tF ma m x i y j        ,  (33) 

where ta  is the transport acceleration. The coordinates of the point B are 

obtained according to Fig. 3, where OC d  and CB b : 

cosx d b    ,  siny b   , (34) 

which are composed functions of time, by angle  .   

 The velocity components are the derivatives with respect to time of Eq. 

(34) are 

sinx b      ,  cosy b     , (35) 

and the components of the acceleration are 
2

2

sin cos ,

cos sin .

x b b

y b b

   

   

    

   

 

 
 (36) 
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 By using the notations from the previous paragraph, it writes 
2

2

sin cos

cos sin ,

x b b

y b b

   

   

     

    




 (37) 

 ,   and   being determined functions. 

 Substituting Eq. (30), Eq. (31), Eq. (32) and Eq. (33) in Eq. (29), it 

obtains 

   sgnm x i mg j N j N x i m x i y j                    ,  (38) 

or still, 

     sgnm x N x i mg N j m x i y j                 .  (39) 

 The following scalar equation system by performing the scalar vector 

product between Eq. (39) and the mobile unit vectors i and j results 

(Mangeron and Irimiciuc, 1978; Teodorescu, 1984): 

 sgn cos sin

sin cos

m x N x m x m y

mg N m x m y

  

 

       


    

   

 
,  (40) 

 By reducing the normal reaction force from Eq. (40), the following 

equation is obtained  

  sin cos sgn cos sinx g x y x x y                . (41) 

 After replacing Eq. (37) in Eq. (41), it obtains: 

     

   

2

2

cos sin sgn

sin cos ,

x g b b x

b b

      

     

           

      

 
  (42) 

that is the differential equation of the relative motion. 

 In Eq. (42) the angle  , the angular velocity   and the angular 

acceleration   are previously established as implicit functions of time. Angle 

  is given by Eq. (23), angular velocity  is given by Eq. (24) and angular 

acceleration   is given by Eq. (25). 

The relative velocity of the body ( )W , denoted by v, is defined as the 

derivative with respect to time of the relative coordinate: 

dx
v x

dt


  ,  

2

2

d x
v x

dt


   . (43) 
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 The initial conditions of motion are: 

 0 0x  ,     0 0 0v x  , (44) 

by supposing that at the initial moment, the body (W) is at rest in B position. 

 In order to numerically solve the differential Eq. (42) with the initial 

conditions given by Eq. (44), it is used a computer aided numerical procedure. 

According to Eq. (43), the differential equation given by Eq. (42) is written in 

the equivalent form of a system of two differential equations of the first order: 
 

   

   

   

2

2

sin cos sgn

sin cos .

x t v t

v b b g v

b b

      

     

 


          

     



 (45) 

  

The Eq. (45) with initial conditions given by Eq. (44) is numerically 

integrated by using a procedure of the following type: 

0, , , , 0,f f

x
Odesolve t t p t t

v

  
     

  
,  (46) 

where ft  is the final moment of time interval inside which the motion is studied 

and 0p  is the number of points (time moments) for which solution is given. 

 By numerical integration of system (45) the relative coordinate 

(displacement) and the relative velocity are obtained as functions of time  

 x x t  ,   v v t , 0, ft t   , (47) 

these being the conclusions of the performed dynamical study. 

 The angular velocity of the driving crank with respect to the number of 

rotations per minute 0 100n rpm , is 

1

0 10.466 s
30

n
   . (48) 

 According to Eq. (48), the time period of the transport motion is  

0

2
0.6 sT




    (49) 

 The numerical values are of the input data are given in Table 1 and by 

Eq. (1), Eq. (28) and Eq. (48): 

6 cmr  ,  50 cml  , 30 cmb  , 38.12 cmd  , 
o

4 30  , 
1

0 10.466 s
 ,  

(50) 

to which the gravitational acceleration g = 9.8 m/s
2
 is added. 
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In Fig. 4 is shown the function      given by Eq. 8. 
 

 
Fig. 4 – Rocker angle   versus crank angle  . 

 

In Fig. 5 to Fig. 13 are presented the numerical results obtained by 

solving the differential equation system given by Eq. (45) with initial conditions 

given by Eq. (44), that is the displacement diagrams  x t  and velocity 

diagrams  v t  as functions of time, for different friction coefficient values. 
 

 
Fig. 5 – Diagrams of displacement and velocity for 0.01  . 
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Fig. 6 – Diagrams of displacement and velocity for 0.1  . 

 

 
 

Fig. 7 – Diagrams of displacement and velocity for 0.2  . 
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Fig. 8 – Diagrams of displacement and velocity for 0.3  . 

 

 

 
 

Fig. 9 – Diagrams of displacement and velocity for 0.4  . 
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Fig. 10 – Diagrams of displacement and velocity for 0.45  . 

 

 
 

Fig. 11 – Diagrams of displacement and velocity for 0.5  . 



Bul. Inst. Polit. Iaşi, Vol. 65 (69), Nr. 1, 2019                                     69 

 

 
 

Fig. 12 – Diagrams of displacement and velocity for 0.55  . 

 

 
Fig. 13 – Diagrams of displacement and velocity for 0.6  . 
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4. Conclusions 

1) Graphical results show that relative motion of (W) body on the sitting 

plane is a pseudo periodical one, having approximative the same period as the 

transport motion, given by Eq. (49). 

2) The extreme points of  v t  functions appear on the diagram at 

approximately the same value. The extreme points of the  x t  functions are 

increasing or decreasing depending on the friction coefficient value.  

3) If  x t  function extremes are increasing, then (W) body motion 

occurs to the right side, in the positive axis direction. 

4) If  x t  function extremes are decreasing, then (W) body motion 

occurs to the left side, in the negative axis direction. 

5) The displacement direction of the (W) body depends on the numerical 

value of the friction coefficient. When the friction coefficient is very small 

(0.01) or very high (0.45 or greater) the motion of the (W) body is to the right 

side. When the friction coefficient is medium (0.1-0.4) the motion of the (W) 

body is to the left side. 
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STUDIUL DINAMIC AL UNUI SISTEM MECANIC DE TRANSPORT INERŢIAL 

ACŢIONAT PRIN MECANISM PATRULATER  

 

(Rezumat) 

 

Lucrarea prezintă o analiză cinematică şi dinamică a unui mecanism de clasa 3, 

ordin 3, care poate fi tratat ca un mecanism complex format prin înserierea a două 

mecanisme patrulatere din care unul este paralelogram. Pentru derularea studiului s-au 

folosit parametri constructivi caracteristici unui model experimental existent. Ca rezultat 

al integrării numerice a ecuaţiei de mişcare s-au obţinut diferite diagrame cinematice 

specifice unor valori ale coeficientului de frecare dintre rigidul a cărui mişcare o 

studiem și suprafaţa de reazem. 


